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Abstract

Human Activity Recognition (HAR) is critical in
quantifying tennis player performance because
of the lack of current quantifiable metrics of
player performance. Most quantifiable models
aim to summarize player performance based on
the results of each action rather than the form
of the player. Maximizing a classification net-
work for basic similar tennis strokes can be used
to analyze stroke frequency (beginner to profes-
sional) in tennis and other sports requiring dif-
ferent forms. Current models aiming at quanti-
fying form detection only categorize forms for
sports or activities that require slower movement
(e.g., preventing injury during strenuous physical
activity in the gym or categorizing behavior dur-
ing housework) and require a large dataset for ac-
curate results. By utilizing recurrent neural net-
works using transformed and augmented data, a
model can detect and classify an athlete’s tennis
strokes to a high level of accuracy with signifi-
cantly fewer amounts of training data required.
This text details the use of different recurrent
neural networks and types of data transformation
to maximize the accuracy and confidence of the
network in categorizing the data from a junior
semi-competitive tennis player while minimizing
the run time.

1 IMPLICATIONS

2 INTRODUCTION

Human activity recognition (HAR) can classify or quantify
player movements and behaviors and has important appli-
cations in sports (Demrozi et al., 2020; Host & Ivašić-Kos,
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2022), strength training (Ganesh et al., 2020; Hussain et
al., 2022), and physiotherapy (Billiet et al., 2016). How-
ever, HAR requires a large amount of classified training
data collected uniquely for each application, this is diffi-
cult and expensive to collect, which limits the application
of HAR (J. Chen et al., 2021; Kim et al., 2010). Effective
data compression can enable easier training of neural net-
works by pre-extracting the most important features which
are relevant to predicting the relevant output (Florea & Ro-
man, 2021).

Most applications of HAR rely on neural networks which
extract features from input data and classify outcomes
(Cruciani et al., 2020; Oniga & Sütő, 2014; Uddin & Soylu,
2021). This means, it categorizes the quality of the shot by
sensor data on the speed, location of where the ball lands,
spin, and other data that signals the exact location and de-
scription of the ball hit (Busuttil et al., 2022; Pedro et al.,
2022) Other forms of determining player metrics and per-
formance is through standardized ratings like Association
of Tennis Professionals (ATP) standings or Universal Ten-
nis Rating (UTR) (Hunt, 2020).

Alternatively, another source of input data could come from
utilizing sensors via an Apple watch or wristband sensor on
the body of a tennis player, although this could obstruct the
full potential of a shot from a tennis player due to restric-
tion of movement (Ganser et al., 2021). Fixing this issue
of mobility while still tracking the movement of a player
across the court could be analyzed using video data (Y.-
C. Jiang et al., 2009; Lara et al., 2018). However, video
data is not optimal due to the variability in player distance
from camera, different color clothes a player might wear,
etc. Additionally, although there are numerous cameras on
every match in the ATP, equipment that allows for 4k reso-
lution and 3D visualization at over 200 frames per second
(FPS) is not viable to the average tennis player (Renò et al.,
2017).

This study shows that application of a pre-trained Open-
Pose wireframe neural network (Cao et al., 2021; Qiao et
al., 2017), allows over 100 fold compression of input train-
ing data (60 FPS, 720p resolution) by extracting the most
important features. The data from the OpenPose model
(Cao et al., 2021) is then used to train a use-case specific
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neural network achieving a testing accuracy 99.62% across
three tennis strokes (forehands, backhands, and backhand
slice) with 28 minutes of video training data. By train-
ing the use-case specific network on data which is highly
compressed the training time and difficulty is dramatically
reduced.

Another challenge posed for the compression of data by
over 100 fold came with the volatility from stroke to stroke
in a practice session (Colomar et al., 2020; Knudson & El-
liott, 2004). This study utilizes a long short-term memory
(LSTM) model combined with convolutional neural net-
works to create a categorization model that can maintain
the same level of accuracy even with high volatility datasets
that seem like they resemble no pattern (Borovkova & Tsia-
mas, 2019; Lv et al., 2022). The first step taken to test this
theory was by categorizing essential and common tennis
strokes. This study then adds in strokes that look relatively
similar based on keypoints and stroke patterns. The fore-
hand and backhand were the two essential strokes chosen
for the first set of testing because they make up the major-
ity of strokes in a match (González-González et al., 2018;
Muhamad et al., 2011). The backhand slice was deemed a
similar stroke to the backhand, and therefore should pose as
more of a challenge to the model (personal communication
C. Anderson).

The computer-generated model is composed of 3 major
components:

• Splitting the action for analysis into smaller, easier-
to-analyze sizes using recursive partitioning-like
methodology (Strobl et al., 2009)

• Feature extraction from the activity to analyze joint
movement as well as extra data like wrist rotation, ver-
tical displacement, etc.

• Classification process to identify the stroke in each
frame.

This paper discusses the first steps to achieving a model
that can detect and classify a player’s movement and fur-
ther steps to achieve this goal model. In the literature, nu-
merous techniques are tested to determine whether creat-
ing a model to detect slight distinctions between strokes
is possible with time to train and time to detect as limits
to the model. Most research in improving athletes’ form
is tested through gym exercises where there are substan-
tially fewer sudden movements, and the repetitions come
in much smaller batches (K.-Y. Chen et al., 2022). The re-
search done shows promising results that the model can, in
fact, achieve a high level of accuracy in determining when
a tennis player’s strokes deviate from the correct form. The
second objective of this paper is to determine the best net-
work and methodology to analyze a tennis player’s strokes
efficiently.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work using models to detect correct forms in
tennis and other sports. Section 3 discusses the methodol-
ogy used. Section 4 discusses the model’s results. Section
5 is further discussion on the model and its applications.

3 RELATED WORK

3.1 Classification networks

Classification of tennis strokes has been performed pre-
viously utilizing a neural network based on varying data
points. The most common is using sensor data through the
use of a wristband on tennis players (Ganser et al. 2021;
Silvia Vinyes Mora 2017). The data required for these
models was nearly 5700 stroke repetitions, greater than
6 times as large as the 909 stroke repetitions used in the
dataset for this model.

3.2 Data collection

Additionally, in large datasets, especially for Human Ac-
tivity Recognition (HAR), finding accurate data sets is ex-
tremely hard. Previous models classifying tennis strokes
utilized data from amateur tennis players where the form
from player to player varied radically (Ganser et al. 2021).
These models required each participant to attach the wear-
able sensors and record themselves going through numer-
ous repetitions of each stroke. This strategy for gathering
video data for the player(s)’ strokes seems like the only vi-
able and repeatable option.

The work in this study is unique because the player
recorded in this dataset is a junior competitive player in
the UTR and USTA system and the strokes recorded re-
mained much more consistent with that of a professional
tennis player. Additionally, each of the strokes was moni-
tored and approved by a professional tennis coach. This pa-
per also differs because the model implemented uses wire-
frame data rather than sensor data, removing the need for
wearable obstructions for the tennis player and achieving
a more reliable and applicable use for the model. Finally,
this study utilizes less than 17% of the previously most ef-
ficient model whilst maintaining an accuracy of 99.62% in
comparison to that of 96% in previous models through the
use of sliding windows for more accuracy.

4 PREPROCESSING DATA

The proposed methodology consists of 4 main steps and
specific implementations and testing for optimization of
each step. The input to this model is the raw video cap-
tured from a widely available video recording device like
an iPhone. The output of the model is a complete list of
problems in relation to the stroke captured in the video.
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Forehand Backhand Backhand slice
Number of videos recorded 103 100 100
Strokes per video 3 3 3

Table 1: The table above describes the number of videos
recorded for each stroke and number of strokes record per
video.

For the sake of creating a model, given the limited com-
puting abilities of the computer I have at the moment, the
output was simplified down to identifying the difference
between a forehand and a backhand, two basic strokes in
tennis. The following steps would be to obtain a computer
with higher computing power. Then, additional labeled in-
put data would be recorded and added, then trained into
a new model to detect imperfections in a tennis player’s
strokes.

4.1 Video format conversion

Due to the goal of implementation of this model to be
widely available to different video cameras that record in
different qualities and formats, the first step was to convert
all of the videos into a standardized format: .mp4. The
data was collected using an iPhone 11 camera. The import
file was captured at 60 fps at 1080p and the video exten-
sion was .mov. The preprocessing done on the input vidoes
was the conversion to .mp4. The fps and the quality of the
videos remained the same.

4.2 OpenPose

Utilizing the OpenPose model provided by PyTorch (Cao
et al., 2021), this project uses a region-based convolutional
neural network. This pretrained RCNN model (Cao et al.,
2021; Sherstinsky, 2020; Xiao et al., 2020) was utilized to
gather the features used in identifying key parts of the body.
The body points include the nose, left eye, right eye, and 14
other key points on the body.

The implementation of the wireframe was through an
OpenPose network trained utilizing a dataset from UCI
(Cao et al., 2021).

4.3 Pre-processing for prediction model

The information given by the OpenPose (Cao et al., 2021)
wireframe was formatted as follows:

• X-coordinate

• Y-coordinate

• Visibility

Each of the 17 points contained these three features for a
total of 51 data points per frame. However, the data needed

Figure 1: Flowchart for stroke classification process

to be normalized in order to ensure a consistent starting
point in the data. The data was then normalized to the nose
(Singh & Singh, 2020) by setting the nose as (0,0) and sub-
tracting the (x,y) coordinate values from each other key-
point. Since the nose point was always the value (0,0), the
preprocessing omitted this singular data point.

The visibility data point (how well the keypoint was ex-
posed to a camera; eg. if the keypoint was hidden behind
the body it would be 0 and if the keypoint was fully ex-
posed it would be 1) did not offer anything valuable to the
prediction model so each of those points was cut out. After
preprocessing, each frame resulted in 32 data points.

4.4 Stroke recognition

This is a supervised machine learning algorithm (T. Jiang
et al., 2020). Strokes video composition consists of around
100 videos of each forehand and backhand to ensure the
model had enough samples to distribute into test and train.

The supervised learning algorithms I used to classify the
strokes include:

• LSTM (Hochreiter & Schmidhuber, 1997; Sherstin-
sky, 2020) - the LSTM is able to accurately predict
time-series data, the type of data that this model used
to analyze. This recurrent neural network at its base is
perfect for video analysis.

• CNN LSTM (Mutegeki & Han, 2020). - adding a con-
voluted neural network (CNN) allows for more spacial
correlation of the data.

• Conv LSTM (Ge et al., 2019; Shi et al., 2015) - the
Conv LSTM is one order of magnitude faster than a
regular LSTM, allowing for faster classification and
creation of the model.

Creating the model and testing it includes three phases:
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• Training: the training phase consists of using the train-
ing videos (80% of the data) and the training labels
to feed into the training step of the model. This data
was split up in the preprocessing step and the corre-
sponding labels were made by the player who hit and
recorded the shots.

• Testing: the testing phase consists of using the testing
videos (20% of the data) and using the testing labels
to check if the model would assume the correct clas-
sification. This data was split up in the preprocessing
step. This step was not manually done. Instead, it was
completed by a built-in function in the keras model
library.

• Using the mode: the user phase consists of using a
new input video without a label in the data set and
running the model for the user to see what the classi-
fication of the stroke is.

4.5 Sliding windows

Video processing includes the analysis of multiple frames.
The LSTM model (Majd & Safabakhsh, 2020; Sherstinsky,
2020) would achieve maximum accuracy if the input data
included overlapped data to have built-in memory when
creating the model.

• The original data shape was: (total frames, all vars)

• The goal shape was: (total sliding frames, total frames
per sliding window, all vars)

Figure 2: The figure above denotes the data augmentation
into sliding frames.

The transcription of the data from the original to the goal
shape was done by looping through the data and choosing
a set interval of 100 frames per sliding window with a 50-
frame overlap from window to window. The extra frames
would be discarded if there were not enough to create an-
other full sliding window of 100 frames.

5 Results

A CNN-LSTM model (Mutegeki & Han, 2020) was trained
with 303 videos which were up to eight seconds to clas-
sify between forehand, backhand, or backhand slice tennis
swings with an accuracy of 100% for forehand, 99.86% for
backhand, and 99.91% for backhand slice.

Figure 3: Batch Accuracy for all 10 experiments across 550
steps.

Figure 4: Description: Batch Loss for all 10 experiments
across 550 steps.

Figures 3 and 4 indicate that the number of steps required to
achieve a comfortable threshold of 95% accuracy was only,
on average across the 10 experiments, around 100 steps.
Additionally, to achieve 99% accuracy, on average across
the 10 steps, the model only required around 150 steps.

Figures 5 and 6 indicate that the number of epochs cho-
sen allowed for a perfect logarithmic graph of results for
epoch accuracy where the top of the curve just flattens at
12 epochs, achieving an accuracy of 95%, on average, 4
epochs, and 99% 12 epochs. Additionally, epoch loss was
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Figure 5: Epoch Accuracy for all 10 experiments across 14
epochs.

Figure 6: Epoch Loss for all 10 experiments across 14
epochs.

minimized across the 14 epochs and reached a low at an
average of 0.05% loss.

The model created utilizing a CNN-LSTM (Mutegeki &
Han, 2020) could categorize at an extremely high confi-
dence between a forehand, backhand, and backhand slice
with 303 8 seconds or less videos containing 3 iterations of
each stroke with less than 1 minute of training per iteration
of model and less than 15 seconds per categorization from
raw video footage. This proved the following:

5.1 LSTM with 4 minutes of training data
distinguishes between forehand, backhand, and
backhand slice with 99.62% testing accuracy

Across a collection of 242 training and 61 testing videos
wireframes including 17 points were constructed from 2D
pose time series dataset with the Openpose algorithm (Fig.
3) (Cao et al., 2021). The dataset included 103, 100, 100

occurrences of forehand, backhand, and backhand slice
tennis strokes respectively. Out of the 17 points, the nose
was used as the center of the body and was set as the origin.

Figure 7: The diagram above labels each of the 17 key
points given by Openpose on a single frame taken from a
sample backhand video.

The LSTM was trained with 2 hidden layers (Salman et
al., 2018) using the key points from all 242 training videos
and trained a model capable of distinguishing the 3 strokes
at an average 99.62% accuracy across 10 trials in under
4 minutes of training per trial. In Figure 7, trial 1 of of
the experiment created a model with an accuracy of 100%
across all 3 strokes and correctly identified this video and
sliding frame as a forehand.

In Figure 7, the model was given the task of classifying
between a forehand, backhand, and backhand slice. The
model successfully classified the stroke as a backhand slice,
while the confidence of the model actually rose to an av-
erage above 99.999%. This result is surprising because
despite the added augmented data, the confidence of the
model to detect between the three strokes increased. Ac-
cording to the expert in the field, professional coach Craig
Anderson, the backhand and backhand slice are relatively
similar strokes. The model was still easily able to detect
that this was a backhand slice in all 8 of the 100 frame slid-
ing windows.
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Forehand Backhand Backhand Slice

Test Precision 100.0 99.857 99.906
Test Recall 100.0 99.928 99.811
Test Fscore 100.0 99.892 99.858

Table 2: The table above gives accuracy metrics averaged
across 10 trials for the LSTM model detecting between
forehand, backhand, and backhand slice

5.2 No loss in accuracy when key features are hidden
behind other parts of the body

In Figure 7, the wireframe model was able to detect 15 out
of 17 of the keypoints reliably and was forced to use an es-
timation algorithm to detect the location of the last 2 points.
These 2 points were still included in the dataset presented
to the CNN-LSTM network and proved to be valuable data
points. The maximum number of keypoints not visible at
any frame during this entire experiment was 7 when the
body was fully turned and the entire left side of the body
was not visible to the camera.

Additionally, including these points was one of the unique
aspects of this study. Keeping these points in still allowed
for a 99.62% total accuracy and helped with categorization
as the predicted locations of the points were still fed into the
model and after examining frames where many key points
were hidden, the model was still accurate in classifying the
stroke.

5.3 High confidence interval in multiple sliding
frames even when strokes are considered
“similar” and “hard to differentiate” by expert
tennis coach

The backhand and backhand slice are relatively similar
strokes. In the initial algorithm testing stage, the forehand
was compared to the backhand to prove model viability.
The second test of the model added a backhand slice where
the takeback (first part of the stroke) looks very similar be-
tween both the backhand and backhand slice. The distinct
difference between the strokes is the wrist rotation and grip
on the racket, as well as direction of the finish of the full
swing on the ball. Despite the similarities in the first half
of the stroke, the model was able to detect the difference
between a backhand and backhand slice, even during the
first sliding windows of 100 frames with a test precision
of 99.86% for backhand and 99.91% for backhand slice as
shown in Table 2.

6 DISCUSSION

The results in this paper show that a LSTM model with
limited amounts of data can accurately and confidently pre-
dict the classification of a tennis stroke between a fore-

hand, backhand, and backhand slice. These three strokes
have a relatively large amount of differences, but with no
drop in accuracy and confidence of the model when the
backhand slice was added to the data set, this model can
confidently classify between two similar strokes (backhand
and backhand slice). Future applications of this model will
be to determine the error in a player’s strokes. Because
this model can classify between two strokes where the dif-
ference in arm, leg, and body positioning is just a couple
inches apart, with further testing, this model should be able
to classify the errors of a tennis player. By collecting the
same amount of data or more for this error classification
model, this model could be outputted for wide use by all
tennis players.

Another step in this study would be to create a 3D wire-
frame (Rani et al. 2021; Kaneko et al. 2019) by adding
another camera angle during each iteration of the stroke.
This would involve rerecording the entire dataset to ensure
that each of the multiple camera angles is recorded during
the same repetition of the stroke.

This model also shows promise because of how fast it
reached the 99%+ accuracy threshold over the total num-
ber of steps, first hitting that threshold at around step 150
on average. The results show that reducing the number of
steps per epoch would still allow the model to have an as-
tounding accuracy, reducing the training time without sig-
nificant repercussions on the model’s ability to classify.

The third result of this model indicated that it had no diffi-
culty in classifying between the two similar strokes. The
next step for this model would be for form error detec-
tion. This form error detection is applicable in any ac-
tion/sport/activity that requires accurate form or technique
(Gajjala & Chakraborty, 2021). Some examples of these
applications, but not limited to are: violin, baseball, run-
ning, typing on a keyboard efficiently, etc.

The International Tennis Foundation (ITF) recently re-
ported 89 million tennis players internationally in 2017, a
player count that continues to grow. Most of these players
do not have access to a coach capable of properly identify-
ing these areas for growth due to a limited number of qual-
ified coaches and funds for regular lessons. Coaches are
essential to the consistent improvement of a tennis player
(Anderson et al., 2021; Keller et al., 2022). In addition to
growth, since tennis is a very physical intensive sport, in-
juries are quite common (McCurdie et al., 2017; Pluim et
al., 2006) and limiting the maximum number of repetitions
of a stroke consecutively or measuring stroke consistency
can help eliminate the chance of injury (Hunt, 2020; Lam-
brich & Muehlbauer, 2022).
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